Scratch

From Inkscape Wiki
Jump to navigation Jump to search

$$\newcommand{\Re}{\mathrm{Re}\,} \newcommand{\pFq}[5]{{}_{#1}\mathrm{F}_{#2} \left( \genfrac{}{}{0pt}{}{#3}{#4} \bigg| {#5} \right)}$$

We consider, for various values of $$s$$, the $$n$$-dimensional integral \begin{align}

 \label{def:Wns}
 W_n (s)
 &:= 
 \int_{[0, 1]^n} 
   \left| \sum_{k = 1}^n \mathrm{e}^{2 \pi \mathrm{i} \, x_k} \right|^s \mathrm{d}\boldsymbol{x}

\end{align} which occurs in the theory of uniform random walk integrals in the plane, where at each step a unit-step is taken in a random direction. As such, the integral \eqref{def:Wns} expresses the $$s$$-th moment of the distance to the origin after $$n$$ steps.

By experimentation and some sketchy arguments we quickly conjectured and strongly believed that, for $$k$$ a nonnegative integer \begin{align}

 \label{eq:W3k}
 W_3(k) &= \Re \, \pFq32{\frac12, -\frac k2, -\frac k2}{1, 1}{4}.

\end{align} Appropriately defined, \eqref{eq:W3k} also holds for negative odd integers. The reason for \eqref{eq:W3k} was long a mystery, but it will be explained at the end of the paper.

$$x^{x^{x^{x^{x^{x^{x^{x^{x^{x^{x}}}}}}}}}}$$