
1

Projet Industriel promotion 2011

PROJET INDUSTRIEL 27

PETIT François

SOYER Baptiste

NGOM Mor

BOUGHIDA Rafik

PAIS Vincent

DESGRANGE Yoann

Commanditaire – Inkscape France

Tuteur industriel - Steren Giannini

Tuteur ECL – René Chalon

Date du rapport – May 18, 2010

Final Report

Image properties dialog

enhancements for Inkscape, a vector

graphics editor.

2

Industrial Project

Inkscape

FINAL REPORT

3

Contents
Introduction .. 4

I. The project .. 5

I.1 What is Inkscape? .. 5

I.2 Absolute and relative links .. 6

I.3 What did we have to do? ... 8

I.3.1 Use of relative links .. 8

I.3.2 Smart re-linking tool ... 8

I.3.3 Image Properties Dialog Re-Design ... 9

I.4 Methods of work .. 10

II. Use of relative links ... 11

II.1 Approach ... 11

II.1.1 Initial solution ... 11

II.1.2 Improvements .. 13

II.2 Summarized final results ... 15

II.2.1 Modifications in “sp-image.cpp” ... 15

II.2.2 Modifications in “rebase-hrefs.cpp” .. 16

III. Smart re-linking tool ... 19

III.1 From XML Tree to display ... 19

III.2 General Scheme to retrieve the date .. 20

III.3 Re-linking of a single image .. 22

III.4 Smart re-linking .. 23

IV. Image Properties Dialog Re-Design ... 26

IV.1 Using Glade ... 26

IV.2 Programming the dialog .. 27

Conclusion .. 30

List of figures .. 31

Appendix .. 32

0.1 Internal organization .. 32

0.2 Working on an open source software .. 32

0.3 Using GTK .. 33

0.4 Personal comments .. 34

Summary .. 38

4

Introduction

“Industrial Projects” are a part of every second-year students’ degree courses

at the École Centrale de Lyon, a French engineering college. Since 2008,

Inkscape has been involved in several projects with the ECL in order to improve

different parts of the software. In fact, our contact with Inkscape is a former

student of the ECL: Mr. Steren Giannini who was the team leader of the first

project aiming at improving Inkscape. Our team immediately took an interest in

this year Inkscape project. Its goal was to improve how Inkscape handles images

(to go from absolute to relative links), and enhance the image properties dialog.

In the school, our coordinator was Mr. René Chalon who is a teacher and

researcher in the Computer Engineering and Mathematics department.

Throughout this report, we first describe the three main objectives of this

project. Then we summarize the work done in order to fulfill each of them.

Finally, we have gathered in the appendix complementary information about the

project: organization and our general feelings about the project.

5

I. The project

I.1 What is Inkscape?

Inkscape is a vector graphic editor which is fully compatible with the SVG,

XML and CSS standards. It is also a free open source software which means that

its source code can be read by everyone and shared without any kind of

restriction.

One of the predominant characteristics of Inkscape is that it is a vector

graphic editor. That means that it deals with vector graphics instead of

traditional images (also known as raster graphics) which are used by software

such as Paint, Photoshop or Gimp to name but a few. To put it quite simply, a

traditional image can be seen as a matrix of pixels whereas in vector graphics all

the shapes are defined by points and curves or any other mathematical

primitives. This difference entails two main consequences: files are usually

smaller when encoded as vector graphics and even better there is no aliasing

when you zoom in (as you can see below on Figure 1).

Figure 1: A traditional and a vector version of the Inkscape logo.

 As Inkscape is open source, anyone can download the sources, modify

them and have these modifications implemented to the main branch of the

software if it is validated by the developer's community. Every features and

6

enhancements that are foreseen or necessary are listed and we have been

tasked with one of them, which can be separated into three different sub-goals.

I.2 Absolute and relative links

 These three objectives are closely related to the notion of relative and

absolute links. So before going any further, we are going to explain what

differentiate them and to sum up the pros and cons of each solution.

 Absolute links are links which give us the whole address of a file. Indeed,

they list every folder you have to go through from the root to the file. An

example of absolute link in Inkscape is:

File//C:/Users/Yoann/Documents/Ecole/2009-2010/PI/Fichiers SVG/exemple.svg

Relative links are links which give us a shortened version of the address of a

file. The way this address is interpreted by the computer depends on the position

of the file where this address is used. For instance, if you are in exemple.svg and

you use a PNG image which has for absolute link in Inkscape:

File//C:/Users/Yoann/Documents/Ecole/2009-2010/PI/Images/logo2009-ec-lyon.png

You have to use the following relative link where “../” is a command that

means that you go to the parent folder of your file.

../Images/logo2009-ec-lyon.png

Now, only the absolute links are used in Inkscape when you import images

into your SVG file. An absolute link is useful when you move your SVG file on

another part of your hard drive, indeed Inkscape will still manage to find the

images that are needed to display the file. But if you want to send the whole

project (SVG file and the imported images) to a colleague (in our example, that

7

would mean sending the folder PI), the absolute links won’t work anymore

whereas if you had relative links there would be no problem as long as your

colleague doesn’t scatter the content of PI among different places of his hard

drive. You can see how an image with a broken link is indicated on figure 2. From

another point of view, we can say that relative links are likely to become very

complicated to use and to read when you have to go up four or six parent

folders.

Finally, an alternative way of using another image in a SVG file is to embed it.

When you choose this option, the image is fully part of the file meaning that

even if you delete the image from your computer, it will appear when you open

the SVG file.

Figure 2: Example of working and broken links.

8

I.3 What did we have to do?

As written before, the project has three different objectives and all of them

have to do with the way of linking images in Inkscape.

I.3.1 Use of relative links

As explained in I.2, relative links are very useful when you send the folder of

a whole project to a colleague as there will be no broken link as long as he does

not scatter the content of this folder. But these links can also be quite confusing

when you try to go up a few parents folder. So, we had to implement a system

that would use relative links for images which are in the same directory or in

children directories of the SVG.

I.3.2 Smart re-linking tool

In the current version of Inkscape if you have several broken links in a SVG

file, you have to manually re-link each one of them. That’s why our second

objective is to provide the software with a tool that can simplify this task. Let us

take the example of a SVG file where the following images were used:

/PI/Images/logo-ecl.png

/PI/Images/logo-inkscape.png

/PI/Images/example.png

Due to several handlings (of the SVG file or of the images), all the links

regarding these images were broken (but the images still share the same folder).

With our tool, as soon as the user has manually re-linked one of these images

(with a newly implemented user interface), the software will offer to

automatically re-link the other ones if:

- they have broken links,

- they have the same original path,

- they exist in the new location.

9

This dialog box should open itself automatically when you open a new svg file

where there is an image with a broken link. Moreover it must be accessible in the

newly redesigned image properties dialog.

I.3.3 Image Properties Dialog Re-Design

The current Image Properties dialog is quite annoying as another one pops up

for each image. So part of the re-design is to make this window re-usable and

dockable, meaning that when the user selects another image: its information

should fill the same window and not a new one. Moreover this dialog should also

be accessible from the Object menu whereas it is only accessible with a right-

click on the image for now. A lot of work also has to be done on the contents of

this window (Figure 3 is the current dialog and Figure 4 is what it should look like

when we are done).

Figure 3 : Current dialog.

At the top, there should be an area that shows

general information about the image, along with a

thumbnail that will give a glimpse of the image we

are working on.

The URL field should be equipped with a browse

button for easy image re-linking. The URL text can also be rendered red if the

link is broken making it easy for the user to spot that there is a problem.

Moreover, we have buttons to select if we want the image to be embedded or

linked (see I.2 for the difference between the two of them).

Figure 4: Re-designed dialog.

10

The fields for the dimensions of the image are to be kept but you should now

be able to choose to make a proportional transformation and the unit of these

numbers.

The position fields should be removed as they are more part of the object’s

attribute (ie which each and every Inkscape objects share) than of properties

that are specific to images.

Finally, we should add an “advanced options” area in which the user will be

able to enter the object ID, to change the resolution of the image and to use the

original image’s aspect ratio.

I.4 Methods of work

First of all, Mr. Giannini advised us to work on the source code of Inkscape in

the Linux environment: Ubuntu. Indeed, this way it was easier for him to help us

as during his project he has worked on Inkscape under Linux. So we all had to

install Ubuntu and to configure it with the correct libraries, it also took some time

to adapt ourselves to this new environment.

Then, Mr. Giannini created a branch for our project on launchpad.net. Each

member of the team created an account on this website and we were added to

the users of this branch. That allowed us to work on the same source code and to

send our modifications when they were working for Mr. Giannini to examine

them. These modifications were automatically merged with the source code of

the branch and so it represented an easy way of gathering the work of everyone

in the same source code. Sadly we did not manage to fully use this method, but

as this project is not very complex in term of organization, it did not hinder our

work.

11

II. Use of relative links

II.1 Approach

II.1.1 Initial solution

Our main problem in the beginning of the “relative path” part was to

understand where to modify the source code. To locate this emplacement, we

looked into a SVG file, to find what was written in it, and then to search in the

files for a function which was writing the UML code. In the “src/xml/repr-io.cpp”

file, we found the “sp_repr_save_rebased_file” whose function was obvious.

After having spent some time to understand what was the syntax of the paths

(URI), and to find which argument of an ”image” node contains the path of the

actual image (“xlink:href”), we decided to modify the function which save the

documents.

In Inkscape, a document has two kinds of representation: an XML tree (the

objects the program works on) and the SVG file (raw text which represents the

XML tree but which can be saved on the hard disk). This saving function converts

the abstract XML tree used by the program into a concrete SVG file.

Our idea was to let the XML tree use absolute paths, but at the moment of

saving the document, this function would write the corresponding relative path (if

the image is in the same folder than the SVG file, or in children directories).

The first effective version of our code was this one (explanations included):

//Check if the object’s attribute we are working on is a path

if(strcmp(g_quark_to_string(iter->key),"xlink:href")==0) {

 // Make a copy of the pass to be able to modify it before saving it.

strcpy(relPathBuff, (const gchar*) iter->value);

// If the path begins by “file://”, remove it.

if(strncmp(relPathBuff,"file://",7)==0) relPathBuff+=7;

12

//If the path begins by “data://” , remove it.

if(strncmp(relPathBuff,"data://",7)==0) relPathBuff+=7;

// If the object’s path attribute beginning is the new path of the SVGfolder

if(strncmp(new_href_base,relPathBuff,strlen(new_href_base))==0) {

 // Remove the corresponding beginning

relPathBuff += strlen(new_href_base);

// Modify the remaining path for it to be a correct relative path (beginning by “./”)

if(strncmp(relPathBuff,"/",1)==0) out.printf(".%s", relPathBuff);

else out.printf("./%s",relPathBuff);

}

// If the paths of image and SVGfile do not match

else {

// Write the unmodified path

repr_quote_write(out, iter->value);

}

}

 else

It was inserted in the “for” loop of the function

“sp_repr_write_stream_element” (in “repr-io.cpp”), just before the line:

repr_quote_write(out, iter->value);

The declaration of the variable relPathBuff had to be added at the beginning

of this function:

gchar * relPathBuff; relPathBuff = (gchar*) malloc(256);

Our code was doing what it was supposed to on our Linux computer, but the

path format was still dependant on the operating system. To avoid that, we used

a constant named “G_DIR_SEPARATOR” instead of the explicit “/”, specific to

Unix operating systems (whereas Windows uses “\”). This constant is

implemented according to the operating system, and is used to solve problems

13

like ours. A few modifications later, the code was adapted, and usable on

different operating systems.

II.1.2 Improvements

The problem with our modification in the saving function was that the XML

tree always contained absolute paths, as we explained previously. Even when we

loaded SVG files with relative ones, they were converted into absolute paths in

the XML tree created. So, when they appeared into the “image properties” box,

the modification could not be seen. To solve this, we decided to move the

modification to the place in the source code where the image was added to the

XML tree representing the working document. To find the right place, we

identified every case where an image is created in the XML tree:

- importation using “File > Import”

- drag and drop a file from the desktop or a file explorer

- copy and paste an image (from another SVG file for example)

- open an image file (“.PNG” for instance) directly from Inkscape

 And we examined how these functionalities are implemented. During the

process, we found an existing function (“sp_relative_path_from_path”, defined in

“dir-util.cpp”) which converts absolute paths into relative ones so we decided to

use it (according to the “Don’t Repeat Yourself” principle of software

engineering), even if it did not take into account the possibility of having a path

containing “file://” before its actual beginning (and so doing nothing if it was the

case).

After a while, we found the place where images are added to the XML tree (in

the “sp-image.cpp” file). We noticed that the “sp_image_write” function was

called in the four cases.

In order to create a relative path from an absolute one, we need the path of

the folder the created path will be relative to. The real problem was to get the

path of the SVG file opened in Inkscape (it was an argument of the saving

function we modified before, so it was not a problem in our initial solution). First,

we tried to use the function of the library Glib named “g_get_current_dir”. This

14

function was supposed to return what we needed, but after some tries, we

realized that it was not working properly. The result of the function was generally

“/home/user_name/” instead of the actual path of the working file. The final

solution we found to get the path needed was a global variable already present in

Inkscape: SP_ACTIVE_DOCUMENT. The structure of this variable is complex (its

type is SPDocument), but the only thing we needed to know was its “base”

argument (containing the path), and we could then apply our modifications (the

code is in part II.2.1).

After some tests, we realized that there was still a case that was not working

well: the importation of images by “File > Import”. For example, if we tried to

import “/folder1/folder2/image1.bmp” into “/folder1/doc1.svg”, the relative link

obtained in doc1.svg was not “folder2/image1.bmp” as it should be but

“folder2/folder2/image1.bmp”, which does not exist (so that a “linked image not

found” icon appeared).

The reason of this odd new problem is complicated and was not easy to

understand. All the technical details are given in part II.2. Eventually, we

identified the function responsible for this (“rebase_hrefs”, in “rebase-hrefs.cpp”)

and found a solution which corrects the problem but which also involves a

strange behavior in a very special case explained in part II.2.2.

Finally, we noticed another problem: the “copy and paste” function is not

handled properly when it is applied to an image referenced to by a relative link.

This time, it has nothing to do with our modifications: this problem already

existed before we change the code. But as only absolute paths were used (if we

did not change them manually into relative ones), almost nobody may have

noticed it. Now that we have given the priority to relative paths, this issue has

quite important consequences and that’s why we have decided to try and solve

it. Unfortunately, it is still a work in progress as we have not yet found a

satisfactory solution. We will do our best to manage to solve this problem before

the end of the project even if it was not explicitly part of our objectives at first.

15

II.2 Summarized final results

Two files have been modified: “sp-image.cpp” and “rebase-hrefs.cpp”

II.2.1 Modifications in “sp-image.cpp”

First, at the beginning of “sp-image.cpp”, we had to add two “#include”

instructions:

#include "inkscape-private.h" //for SP_ACTIVE_DOCUMENT

#include "dir-util.h" //for sp_relative_path_from_path

Then, the main part of our modifications is in the function “sp_image_write”:

/* (François & Rafik)

 * The following lines replace : repr->setAttribute("xlink:href",image->href);

 * If image->href is an absolute path, we will try to transform it into a relative one.

 * The condition is that the image is in the same directory than the svg file, or in

 * children directories (we use 'sp_relative_path_from_path')

 */

 gchar * image_href = strdup(image->href);

 gchar * image_href2 = image_href; //image_href2 points to the same string as image_href (a

copy of image->href)

 if(!strncmp(image_href,"file://",7)) image_href2 += 7;

 //image_href2 is image_href without "file://". Indeed, with "file://", g_path_is_absolute

 //always return false

 if (g_path_is_absolute(image_href2) && SP_ACTIVE_DOCUMENT) {

//we don't do anything if the path is already relative or if we are working in a new document

//(not saved yet)

 strcpy(image_href2,sp_relative_path_from_path(image_href2,SP_ACTIVE_DOCUMENT-

>base));

 }

 g_warning("sp-image (image_href=%s ; image_href2=%s) :",image_href,image_href2);

 if(g_path_is_absolute(image_href2)) //sp_relative_path_from_path did not work

 repr->setAttribute("xlink:href", image_href);

 else

 repr->setAttribute("xlink:href", image_href2); //relative path must not begin with "file://"

 g_free(image_href);

16

All the explanations are in the comments. These lines were inserted just

after:

 if ((flags & SP_OBJECT_WRITE_BUILD) && !repr) {

 repr = xml_doc->createElement("svg:image");

 }

II.2.2 Modifications in “rebase-hrefs.cpp”

Finally, there was the problem of the “rebase_hrefs” function, evoked in part

II.1.2. The role of this function is to change all the relative paths of a document

(the argument “doc” of the function), supposing that they were relative to the

base of this document (for instance: the base of the file “/folder1/doc1.svg” is

“/folder1”) and that they now should be relative to the argument “new_base”.

For example, this function is called when the user changes the location of the

SVGfile with the option “File > Save as…”.

And we realized that it was also called during the importation of a file and

that it was this function which added a second “folder2/” in the example we took

in part II.1.2. Everything is detailed in the comments which precede the few lines

of code we added:

 /* (François & Rafik)

 * The following 'continue' instruction solves a problem in image importations, which

 * appeared when we modified the function 'sp_image_write' (in sp-image.cpp) in order to

 * use relative paths instead of absolute ones for images when possible.

 * In that function, the path is transformed to be relative to SP_ACTIVE_DOCUMENT->base.

 * Unfortunately, in the process of file importation, a temporary document with only the

 * imported images is created (their paths may be changed into relative ones by

 * 'sp_image_write' in this temporary document), and then 'rebase_hrefs' is called to

 * rebase the relative paths of the temporary document as if they were relative to the

 * imported file (whereas the ones created by 'sp_image_write' are already relative to

 * the active document).

 *

 * In order to solve this problem, rebase_href mustn't do anything if the relative path was

17

 * created from SP_ACTIVE_DOCUMENT->base. The only criterion we have found to detect

 * that case is testing if the path already points to an existing file without rebasing it.

 * This may cause some strange behavior if there are two different images with the same

 * name and the same relative path, one from the imported file, and the other from the

 * working '.svg' file. But we assumed this case to be really tricky and for it not to be

 * often seen. */

 if (Inkscape::IO::file_test(g_build_filename(new_abs_base, href, NULL),

G_FILE_TEST_EXISTS)) {

 continue;

 }

This code was inserted in the “for” loop (hence the instruction “continue”),

just after the lines:

 if (!href || !href_needs_rebasing(href)) {

 continue;

 }

Let us come back to our example of part II.1.2: we were trying to import the

image “/folder1/folder2/image1.bmp” into the Inkscape document

“/folder1/doc1.svg”. A temporary XML tree is built; it contains only one object,

the image, with the absolute path “/folder1/folder2/image1.bmp” which is

immediately transformed by our code in “sp-image.cpp” into

“folder2/image1.bmp” (relatively to the base of the active document). Then, the

“rebase_hrefs” function is applied, considering this path was relative to the base

of the imported file (“/folder1/folder2”) and that it should now be relative to the

base of the SVG file (“/folder1”): the function concludes that it have to add

“folder2/” at the beginning of all the relative links of the temporary file (hence

the “folder2/folder2/image1.bmp” broken link). But with our modification of

“rebase_hrefs”, it will not change “folder2/image1.bmp” because it already points

to an existing file without rebasing it: if we add the base of the SVG file, we

obtain “/folder1/folder2/image1.bmp”, which exists.

You may be wondering if there are some cases when the “rebase_href”

original function is useful during a file importation and will not be prevented by

18

our code from doing its dangerous work. The answer is of course yes: it happens

when the imported file is for example a SVG file itself and contains relative-linked

images. In this case, these relative paths are not modified by “sp_image_write”

(because they are already relative) so that this time, in the temporary document,

they are really relative to the imported file and not already to the active

document. Thus, they must be rebased, and they will be, except in a very

particular case…

The example that follows is more complicated than the previous one, but it

illustrates very well the functioning of the importation of files with our

modifications.

We are now trying to import “/folder1/folder2/doc2.svg” into another

Inkscape document “/folder1/doc1.svg”. “Doc2.svg” contains two images:

image1.bmp and image2.bmp, which are both in the same directory (folder2) but

the first one with an absolute link and the other with a relative one

(“folder1/folder2/image1.bmp” and “image2.bmp”). When the temporary

document is created, sp_image_write change the first one into “folder2/image1”

(relative to the active document) and does not change “image2” as it is already

relative. Then “rebase_href” tests if these files need rebasing: the first one does

not because folder1/folder2/image1 exists, but the second one will be rebased as

/folder1/image2.bmp does not exist. Thus, we eventually obtain two relative

links: “folder2/image1.bmp” and “folder2/image2.bmp”, just as we wanted.

The “tricky case” evoked at the end of the comments of the code would be if

there was another file named “image2” in “folder1”! In this case, the relative link

“image2.bmp” is not rebased, so that it will eventually point to the image2 of

folder1 instead of the one of folder2.

III. Smart re-linking tool

One of the purposes of the project was to provide Inkscape with a tool for

the treatment of images with a broken link. A broken link occurs whenever the

image has been moved or deleted from the directory it was previously saved in.

Currently, the only solution that users have is to manually re-link these images,

using the Image Proprieties dialog box to modify their path. Our goal is to

develop a tool to make this re-linking easier.

 First, it needs to warn the user as soon as he opens a SVG document

containing at least one image whose link is broken. A window should pop-up and

allows the user to indicate the new path thanks to a browser. Inkscape will then

modify the corresponding attribute of the image proprieties and display the

image on screen.

However, if a document contains an important number of broken links, re-

linking every image one by one will still be long and annoying, particularly if they

are all located in the same folder. Consequently we need to implement a smart

tool: after the user has re-linked the first broken image, our tool will

automatically check if the other images are present in the same folder (or any

children folder) of the first image. Of course if the search is not successful, a new

pop-up window will still appear to re-link the second image, but in a lot of cases

it will be a time-saver for the user.

III.1 From XML Tree to display

Our first objective was to understand how Inkscape displays the images

contained in a SVG document. A SVG document is represented by a XML tree,

where every node is an element of the document (layer, image, geometric

form…). Every type of element is represented by its own class, and all these

classes inherit the same generic class SPObject.

20

A function, _updateDocument is called to realize the display of the

document. It reads the XML tree recursively, and on every node calls the right

update function - according to the node type - to lead to the full display of the

document, as shown in Figure 5.

Figure 5: A XML Tree and the corresponding display

Let’s now focus on how we update an image. The update function of the

SPImage class tries to update the pixbuf (a data structure describing an image)

according to the flag(s) it has as arguments. These flags indicate which kind of

modification the image has suffered from since the last update. If the flag

SP_IMAGE_HREF_MODIFIED_FLAG (i.e. the path of

the image has been modified) is thrown, the function

sp_image_ repr_read_image will try to create the

display (i.e. updating the pixbuf) from the new path.

In the current version of Inkscape, if the link is

broken, it simply displays a default image shown in

Figure 6.

III.2 General Scheme to retrieve the date

A simple idea would be: whenever a broken link is detected in the function

sp_image_repr_read_image, we let the user choose the new path of the image

and simply create the pixbuf with this path. But it won’t be a practical solution,

as it will display a window for every broken image. Moreover, as each window

can’t communicate with one another, it cannot know whether or not there are

other broken images. Then a smart re-linking tool cannot be implemented.

Figure 6: Default image for

a broken link

21

Another solution would have been to modify all the function from

_updateDocument to sp_image_repr_read_image, adding a new argument

pointing the broken image. This image would have then been treated in

_updateDocument. However this idea has quickly been rejected, because the

SPImage update function is called not only by _updateDocument but also by

some other functions, and this solution would imply to modify a lot of classes.

Still we decided to treat all the broken links in Document, as only one

window would pop up in every document. The solution we choose to implement

uses a new class named Re-link. Every time a new document is opened in

Inkscape, a new instance of this class is created and is identified by a numeric

ID. Then every document will have its own Re-link instance, which will treat the

broken links, if needed. During the update, every broken link is stored in a

matrix (i.e. an array of arrays). Each line of this matrix, indexed by the ID of its

Re-link instance, stores all the broken links of a one document.

Once the update of all the documents is over, every Re-link instance will

look if its line is empty or not. If it is not empty, the pop-up window appears,

showing all the broken links and propose to re-link the first one. Furthermore,

when we move the mouse over a link, we can see the full path of the image.

Figure 7: Pop-up window showing the broken links

 This window has been made using GTK, a cross-platform toolkit for

creating graphical user interfaces (GUI). It was first designed for the free

graphics editor GIMP, but it has been involved in many projects including

GNOME, a popular desktop environment, and Inkscape. It is an easy way to

create all kind of windows (for further information, see 0.3).

22

III.3 Re-linking of a single image

Whenever a broken image is detected, the user should be able to simply

and quickly re-link it. We decided to use a browser window, where the user can

navigate in the computer directories to indicate the new path of the image

(Figure 8). The same window will be used if the user wants to change the path

by the Re-link button in the Image Proprieties dialog box.

Figure 8: Browser window used to re-link an image

Once the user has selected the file, we simply set the path of the SPImage

object to the new one. We then remove the image from the broken links matrix,

and realize a display update. When this re-link is completed, we check whether

there still are broken images. If so, the smart re-linking tool begins its work, as

we will see in the next section.

23

Figure 9: Document after the first image is re-linked

 However, if for some reason the user decides to cancel the re-linking, he

can still use the Image Proprieties dialog box to re-link his image(s), as we

suggest in the exit window shown in Figure 10.

Figure 10: Exit window

III.4 Smart re-linking

The smart re-linking tool is the most interesting and important part of our

work. It must be able to find the remaining broken images simply thanks to the

path where the first re-linked image has been found. To understand how this tool

works, let’s consider a quick example, where there are four images to re-link.

24

C/File.jpg

C/File1.jpg

C/Directory1/File2.jpg

D/Directory1/File3.jpg

The image File.jpg has been re-linked to the path E/File.jpg. We then will

start the search of the three other images in the directory E. Let’s say this

directory contains:

- a file File1.jpg,

- a folder Dir1, containing a file File2.jpg,

- a folder Directory1, containing two files, File2.jpg and File3.jpg.

The first image was initially at the path C and has been re-linked to E. So

we take every broken image located in C or any child folder, we replace C by E in

the full path of these images, and check if a file exists at this new path.

 For example, File1.jpg was located in C, so we try to find it at E/File1.jpg.

This file exists, so we re-link File1.jpg with it. We do the same thing for File2.jpg,

which was located in a child folder of C. This file will then be re-linked to

E/Directory1/File2.jpg.

However we cannot re-link File3.jpg because

it was located in D/Directory1, despite the fact

there is a file named File3.jpg in E/Directory1. In

fact, there is no chance the smart re-linking tool

could re-link this file from File.jpg as File3.jpg

wasn’t located in the same folder or a child

folder.

The smart re-linking is over. A window,

like the one shown in Figure 11, appears, summarizing all the images we were

able to found, and asks the user for a confirmation before proceeding to the re-

linking.

After that, there is still one image which is not re-linked, so a new window

will pop-up. If there were still more than one link broken, the pop-up window

allows re-linking the first one in the list, and then a new smart re-linking occurs

Figure 11: Smart re-link

dialog

25

for the remaining images and so on until every image is re-linked, or the user

choose to cancel the re-linking.

Figure 12: Successful re-linking

This program is very efficient in some case. For example, if all the images

were in the same folder, and this folder has been renamed, the smart re-linking

tool can easily re-link them. However if every image has been moved in a

different folder, the smart re-linking tool won’t give any result, and the user

would have to re-link all the images one by one. A solution could be to make a

complete depth search from the folder where were found the first image, but it

would be a long process if for example we re-link from the root of the hard drive

(every file in the computer should be examined).

26

IV. Image Properties Dialog Re-Design

This part of our project aimed at completely re-designing the Image

Properties dialog. All the changes that were to be implemented are listed in I.3.3.

In order to successfully re-design the dialog we extensively used the GTK

language which is described in 0.3.

IV.1 Using Glade

At the beginning, we wanted to use a software named Glade in order to

program the general structure of the new dialog more easily. It would have

allowed us to put more time into the more difficult parts of this objective.

Glade is a tool which is very useful when it comes to creating GTK graphic

interfaces. Indeed, it generates the code regarding the different windows and

buttons automatically and thus allows the programmer to design new windows

by dragging and clicking rather than typing lines of code. It saves the graphic

interface in XML files and these files can then be used by several languages (such

as C, C++, Java and PHP to name but a few) thanks to a library named

“libglade”.

Figure 13: Glade Interface

27

Unfortunately, we realized after a while that programming the whole dialog

using Glade would have two major consequences:

- each and every makefile would need to be modified in order to add

instructions regarding “libglade”,

- any person who would like to compile Inkscape on his computer would

need to install the “libglade” library just because of this dialog that we

added.

This led us to change our plans and to start programming in GTK without

using any other library. This means that compiling Inkscape with our dialog

implemented in it will not be any more complicated than compiling the current

version of Inkscape.

IV.2 Programming the dialog

In order to realize the Image Properties dialog, we mostly modify sp-

attribute-widget.cpp. This document can be found in the directory /src/widget

and include some other files of interest such as sp-attribute-widget.h. All the

functions and structures linked to sp-attribute-widget.cpp are defined in the .h.

Among these structures, the most interesting is SPAttributeTable which is

defined as written below:

/* SPAttributeTable */

struct SPAttributeTable{

 GtkVBox vbox;

 guint blocked : 1;

 guint hasobj : 1;

 GtkWidget *table;

 union {

 SPObject *object;

 Inkscape::XML::Node *repr;

 } src;

28

 gint num_attr;

 gchar **attributes;

 GtkWidget **entries;

 sigc::connection modified_connection;

 sigc::connection release_connection;

};

As we can see in this piece of code, SPAttributeTable is a structure (keyword

“struct”) containing a vertical GTK box (GtkVBox) and storing information and

variables such as num_attr or attributes (which is here a 2D array of characters).

But the variable that interests us the more is GtkWidget *table, as it is an array

that stores all the attributes of an image. Also, we need to modify sp-attribute-

widget.cpp in order to display the dialog shown on Figure 4. Modifications in this

document start to appear at line 568 and some of them are listed below.

/*Create a table that will store the properties of the image (spat being a SPAttributeTable)*/

spat->table = gtk_table_new (num_attr, 2, FALSE);

/**…+*/

for (i = 0; i < num_attr; i++) {

 GtkWidget *w;

 const gchar *val;

 spat->attributes[i] = g_strdup (attributes[i]);

 /* we create a label matching the name of the attribute (URL, Width, …)*/

 w = gtk_label_new (_(labels[i]));

 gtk_widget_show (w);

 gtk_misc_set_alignment (GTK_MISC (w), 1.0, 0.5);

 /*we store the label in the table*/

 gtk_table_attach (GTK_TABLE (spat->table), w, 0, 1, i, i + 1)

 GTK_FILL,

 (GtkAttachOptions)(GTK_EXPAND | GTK_FILL),

 XPAD, YPAD);

/**…+*/

/* we display the different frames containing the image properties*/

 gtk_widget_show (spat->table);

29

This loop allows us to run through the whole structure and to display each

piece of information in the corresponding frame. Comparing the current dialog

(Figure 3) and the dialog we are aiming at (Figure 4), we can see that we have

to create four frames. In GTK, in order to create a frame, you use the function

Gtk_frame_new(name of the frame). The first frame has no label and contains

the following properties: name of the image file, location of the image on the

hard drive, size of the file, dimensions of the image and resolution. The second

frame is named “image source” and contains two buttons “Linked” and

“Embedded” (one of which must always be selected), a “browse” button to run

through the directories and an URL field to display the path to the image. The

third frame is named “Dimensions” and should contain the current dimensions of

the image (the first frame contains the natural dimensions of the image while

with this one we can modify of the image appears in Inkscape). Finally, the last

frame is labeled “Advanced options” should be a concealable list of every

advanced options of the image. At the moment this report is written, the dialog

is the following state:

It is still clearly a work in progress. Some

things are yet to be corrected or added such as

the title of the dialog, the layout of the elements,

the display of the resolution or the tool to modify

the dimensions. Nevertheless, we have good

hopes that all these modifications will be made

before the end of this project and that we will be

able to present them during the oral examination.

Figure 14: Our Image

Properties dialog

30

Conclusion

The objectives of this project were:

- Generalize the use of relative links,

- Implement a smart re-linking tool,

- Re-design the Image Properties dialog.

As this report is written, we can say that the first and the second goals are

reached. Indeed the problem we still encounter with relative links is due to a pre-

existing bug in Inkscape that we are trying to solve even if it was not part of our

explicit objectives. Regarding the third goal, we still have some work to do but

have good hopes that it will be reached by the end of this Industrial Project

(meaning May the 25th). Although our work may not be bug-proof, we have

already corrected many of them.

As soon as the third goal is reached, we will be able to submit our work to the

developers’ team. If they found it worth of implementation into the next

Inkscape version, we will have to fill in the Inkscape wiki that acts as a

documentation reference.

The hope of seeing our work implemented into a future version of Inkscape

and the feeling of helping users is what kept us motivated all along this project.

But whatever the outcome, we are really proud of having tried to add our

contribution to Inkscape.

31

List of figures

Figure 1: A traditional and a vector version of the Inkscape logo. 5

Figure 2: Example of working and broken links. ... 7

Figure 3 : Current dialog. .. 9

Figure 4: Re-designed dialog. .. 9

Figure 5: A XML Tree and the corresponding display................................. 20

Figure 6: Default image for a broken link .. 20

Figure 7: Pop-up window showing the broken links 21

Figure 8: Browser window used to re-link an image 22

Figure 9: Document after the first image is re-linked 23

Figure 10: Exit window ... 23

Figure 11: Smart re-link dialog .. 24

Figure 12: Successful re-linking ... 25

Figure 13: Glade Interface .. 26

Figure 14: Our Image Properties dialog .. 29

file:///C:\Users\Yoann\Documents\Ecole\2009-2010\PI\Rapport%20de%20PI%20v1.0.docx%23_Toc261644071
file:///C:\Users\Yoann\Documents\Ecole\2009-2010\PI\Rapport%20de%20PI%20v1.0.docx%23_Toc261644073
file:///C:\Users\Yoann\Documents\Ecole\2009-2010\PI\Rapport%20de%20PI%20v1.0.docx%23_Toc261644078
file:///C:\Users\Yoann\Documents\Ecole\2009-2010\PI\Rapport%20de%20PI%20v1.0.docx%23_Toc261644081

32

Appendix

0.1 Internal organization

At the beginning of this project and for a month or so, we have worked all

together. During this period, we installed Ubuntu, downloaded the source code of

Inkscape and tried to get a good grasp of what we were to do. It allowed each

and every one of us to have a global vision of our project before focusing onto a

specific part of it.

Then, as the project was pretty well divided into three parts, we decided to

split the team into three groups. François and Rafik took care of the objective

concerning the use of relative links. Baptiste and Vincent tried to implement the

smart re-linking tool. Finally, Mor and Yoann were to address the re-designing of

the Image Properties dialog.

0.2 Working on an open source software

During our project we have come to realize that Inkscape shows all the

characteristics either good or bad that we were expecting in an open source

software.

The main drawback of such a software is to be found in the source code.

Indeed unlike company issued ones, open source software are often written by

enthusiast programmers who find more interesting to add new features than to

provide further programmers with understandable code. Also, it was often quite

difficult to find the pieces of code we needed and we had to ask Mr. Giannini for

help a few times. Having experienced the problems entailed by a lack of

information about the code, we tried and commented the parts we added as

much as possible.

But working on an open source software also has positive sides. For instance,

we had the feeling of belonging to a community as a few articles on the Internet

spoke about what we were trying to do. This feeling of doing something useful,

33

something users were interested in, helped us to cope with the discovery of the

huge source code which was quite frightening at first glance. Another benefit of

working on an open source software is the fact that we were not hindered with

restrictions or confidentiality contracts as we would have been in an actual

company. It allowed us to focus solely onto the improvement of Inkscape and

thus to make the most of the time we had.

0.3 Using GTK

GTK is a language that was initially developed in order to program GIMP (GNU

Image Manipulation Program) which is an open source images editor. Still, it is

now used in several other projects and has been given birth to GTK+. GTK+ is a

library which allows people to create graphic interfaces compatible with several

environments (Windows, UNIX …). It can be used and modified freely and is

available in a lot of languages such as C, C++, Ada, Perl, Php …

 GTK is composed of two main kinds of elements: the widgets and the

signals. Widgets (also known as window gadgets) are the objects at the base of

graphic development in GTK+ (GtkWidget). Any graphic object inherits the

attributes and methods of a widget. You can see below how it is possible to

create a dialog with GTK+.

Gtkwidget* window; //creation of a widget

window=gtk_window_new(GTK_WINDOW_TOPLEVEL); //creation of a window

GtkWidget* bouton=gtk_button_new(); //creation of a button

GtkWidget* label)gtk_label_new(“button”); //creation of a label

gtk_container_add(GTK_CONTAINER(button), label); //adding the label to the button

gtk_container_add(GTK_CONTAINER(window), button); //putting the button in the window

 Any action performed by the user onto the graphic interface (clicking for

instance) is gathered by a loop. The widget that is concerned by this action emits

a signal (it can for example be “clicked” for a button) which will be connected to

a function called callback that the programmer has to complete.

34

GtkWidget *button = gtk_button_new_with_label("button"); //Creation of a button

g_signal_connect(G_OBJECT(button),"clicked",G_CALLBACK(callback),NULL);

//connection of the signal “clicked” with the function “callback”

void * callback(void * arg){} //definition of the function “callback”

0.4 Personal comments

Yoann Desgrange

I find that this project proved to be both very interesting and difficult. I had

no real experience at programming beforehand and getting used to Ubuntu also

took me some time. But now that this project comes to an end, I realize that I

am now capable of finding most of the pieces of code I am looking for quite

easily and even if I am still not confident when trying to change big chunks of

code, I do not feel powerless anymore. I also realized how thinking things

through is very important in programming. Indeed, the fact that Mor and I

started a little too fast finally slowed us down a lot as we had to start again from

scratch.

Moreover, the opportunity of writing a full report in English proved to be very

interesting too. Indeed, I intend to work in an English-speaking country sooner

or later and getting a first idea of what it is to sum up your work in another

language was quite fulfilling.

Mor Ngom

This project allowed me to improve myself on certain points particularly

programming under GTK. It is a project which also allowed me to see my limits

on certain aspects of programming. Through this project, I namely realized that

understanding a program from another person and modifying it, is not an easy

thing. In addition to that, it also permitted me to see that the absence of

methodology in the way of programming can lead to unexpected results. Indeed,

Yoann and I started to develop the Image Properties window by using a software

35

(Glade) to go faster, but in the end it is the thing which slowed us down because

we didn't enquire too much about this software.

All in all, this project proved to be rich in learning for me even if I am a little

disappointed by my results.

Baptiste Soyer

What motivated me first in participating in this project was to work on a

widely used tool like Inkscape. Our work could benefit a lot of people, unlike

many others Industrial Projects.

 I mainly worked on the re-linking tool. With Vincent we spent a lot of time

trying to understand how Inkscape update its display. We went in many wrong

directions as one of the main flaws in Inkscape is its lack of documentation.

However we manage to understand this process. The second step was to find a

way for the re-link windows to know which images where broken, and finally find

a way to re-link them. It was quite difficult as one problem could mean that I

had to rethink the whole architecture of the program I was trying to implement

(and it happened many time). However after such an arduous process being

finally able to see a window popping up when there is a broken link and enabling

the user to re-link them is very rewarding.

This project was very interesting. I have learnt a lot concerning the structure

of a real software, and the complexity behind what seems at first very simple.

Vincent Pais

I was really enthusiastic to participate in the development of a widely used

software. With this project, I realize there is an immense gap between

programming, as it is taught in Centrale Lyon, and what is really done in a big

open-source project like Inkscape. It explains some of the difficulties we had in

the first months when we tried to get familiar with a large, and often

uncommented, code.

36

From a personal point of view my contribution hasn’t been as important as

I expected, because of the problems we had using Bazaar, but still I think I

learnt a lot about software engineering from this project.

I am really hoping that our work will be integrated in a future version of

Inkscape, as it would be a great accomplishment to see our work recognized and

approved by the developer community. Consequently I wouldn’t mind keeping

working on the re-linking tool, as many enhancements can probably still be

made, so that one day every user of Inkscape can benefit from it.

Rafik Boughida

I was interested in a computer-engineering Industrial Project because it

corresponds to what I want to do after my studies in the Ecole Centrale de Lyon.

As for this particular project, it was a very good experience for me because it

was the first time I had been confronted to the source code of a professional-like

software application with hundreds of files. It made me realize the importance of

the documentation for such a collaborating project: it took us much more time

understanding the existing code than writing our own lines.

I appreciated too the repartition in three groups of two persons: I realized

that working with a partner on a code could be very efficient, much more than

working alone or in a bigger group.

Moreover, it made me more familiar to the C++ programming language. I

had already programmed in many different languages, and I had always thought

it was a shame that I was not at ease with this one, which is probably the most

used professionally.

François Petit

Personally, I took this project as an introduction into the world of software

engineering as I want to work in that domain later on. My experience in this

domain was very rewarding. As project leader, I could realize the importance of

37

making regular meetings with the rest of the team, in order to be able to

synthesize the overall advancement of the project. I also learned that a project

in software engineering is very slow to begin, and it was sometime worrying to

think about the time we took in order to understand the code that was already

written. But in the end, applying the modifications was really fast, so the largest

amount of work was the understanding, not the writing (at least for the relative

links handling part). The most rewarding aspect would be for our updates to be

published in a “released” version of Inkscape, although it might take some time

(on the basis of the previous Inkscape projects).

38

Summary

The Industrial Project n°27 aimed at improving the open source vector

graphic editor Inkscape. A team of six students was given the responsibility of

improving the way Inkscape dealt with images. This general objective was

divided in three roughly independent parts: to make the software use more

relative links, to implement a tool for smart re-linking and tore-design the

existing Image Properties dialog.

Throughout this report, you will be able to grasp what are the differences

between a vector graphic editor and a traditional graphic editor and why the

changes made by the team will prove useful. Moreover, you will be able to see

the work that has been done during the last five months. Finally, each member

of the team will explain what this project brought to him and what he preferred

in it.

